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a b s t r a c t

Source signal is one of the main input parameters when auralizing moving sound sources in the Virtual
Reality (VR) environments. This work utilizes compressive beamforming (CB) as a tool to reconstruct sig-
nals from fast moving sources. A pseudorandom microphone array is designed to meet the requirement
of using CB and delay and sum beamforming (DSB), thus allowing for the signal reconstruction from the
CB output and for the comparison between these two beamforming algorithms. Parameter studies
through error analysis are conducted to evaluate how the reconstructed source signal is influenced by
parameters, i.e. regularization parameter, window length, signal-to-noise ratio (SNR), basis mismatch
and distance between the array and source trajectory. In general, CB outperforms DSB in signal recon-
struction in terms of varying every parameter, except for the similar performance with SNR = 30 dB.
We used the designed microphone array with both CB and DSB to reconstruct the signal of a known
engine noise emitted by a loudspeaker installed on a moving car. The localization results delivered by
CB are similar to DSB, which is in line with the simulation results. This behavior can result from potential
coherence in the sensing matrix of CB due to similar time-domain transfer functions (TDTFs). However,
CB still delivers lower reconstruction errors. Both simulation and measurement results indicate that CB is
a viable option to reconstruct the signals of fast moving sound sources.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Auralizing fast moving vehicles in urban environments requires
the characterization of sound sources, including obtaining signals
and spatial locations, which is one of the key questions in auraliza-
tion [1]. Combining with follow-up synthesis and propagation
models, the auralizations of moving vehicles, e.g. cars and aircraft,
can be created [2,3], even with interactive real-time implementa-
tions in virtual reality [4–7]. Characterizing moving sources is
more difficult compared to stationary sources, due to the time-
dependent spatial location and frequency-shifted signal at the
receiver’s position caused by the non-stationary motion [8]. This
paper investigates the characterization of fast moving sound
sources, with the focus on reconstructing the signals based on
the spatial locations of sources associated with vehicles such as
intake, exhaust and tire noise.

The sound source signals can be obtained by forward and back-
ward models according to the inherent principles [3]. The forward
model requires physical or spectral information, or relies on the
generation mechanism of sound sources, whereas the backward
model utilizes either near-field or far-field recordings to extract
sound source signals. Compared to the forward model, undertaking
measurements in the backward model is more time consuming.
Nevertheless, it saves the time to establish physical or empirical
models. Moreover, signals obtained from recordings overcome
the deficiency of low realism which is probably the main drawback
of the forward model [6]. More problematically, theoretical models
or empirical equations are not always achievable, such as in the
case of aerodynamic noise caused by fast motion.

The backward model has been applied to generate the signals of
moving sound sources. It was used to obtain aircraft noise signals
from several recordings with microphones at discrete positions on
the ground [9]. Peplow et al. [10] utilized the backward model to
extract train noise signals by back propagating mono pass-by
recordings of several distributed moving sources. However, for
most of the cases, the locations of sound sources on moving vehi-
cles are unknown, which is a key information for source character-
ization. Additionally, although the train passed by slowly, the
recording of a particular target sound source was still contami-
nated by the presence of other sound sources. Bongini et al. [11]
first applied a two-dimensional microphone array to localize the
sound sources on a moving train. However, the impact of neighbor
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Fig. 1. Illustration of rectilinear motion of a point sound source moving at a
constant speed.

F. Meng et al. / Applied Acoustics 150 (2019) 236–245 237
sources still exists because they also obtained the source signals by
back propagating the individual pass-by recording from each
microphone.

Delay and sum beamforming (DSB) was first applied in the
backward model to extract the signal from a moving sound source
[3]. Using beamforming benefits source characterization because
along with the signal reconstruction, the localization was also
obtained. The directional pattern of the beamformer overcomes
the contamination of the desired source from other sources. How-
ever, DSB fails to yield high spatial resolution, which might result
in reconstructed signals with noise from neighboring sources. In
order to reconstruct signals more precisely, we need higher
spatial-resolution beamforming methods, which can possibly be
modified for moving sound sources.

Compressive beamforming (CB) is a method to achieve super
resolution even with a small number of microphones, and it was
indicated for the localization of moving sources [12,13]. However,
CB has not been applied for the extraction of the source signal.
Edelmann and Gaumond [14] mentioned the possibility to ‘‘listen
to” the source by taking an inverse Fourier transform on the CB
output, but it was not executed and yet the target was stationary
sources. Therefore, we will explore CB for our goal of reconstruct-
ing non-stationary signals, thus extending the application of CB to
source modeling for auralization.

The current research extends the application of CB to recon-
struct the signal radiated by a fast moving sound source. The
time-domain transfer function (TDTF) with incorporating Doppler
effect [15] is adopted in CB as the sensing matrix. To start with, a
framework for designing and optimizing pseudorandom micro-
phone arrays for CB is proposed. Subsequently, errors in terms of
regularization parameter, window length, SNR, basis mismatch
and distance (between the source moving trajectory and array)
using CB are analyzed. To conclude, the capability of using CB for
the signal reconstruction of fast moving sources is performed on
a known engine noise signal played by a moving loudspeaker
attached to a car.
2. CB for moving sound sources

A scheme of how to use CB incorporating TDTF is proposed for
moving sound sources. DSB for moving sources is also briefly intro-
duced for later comparison with CB.
2.1. Moving sound source

2.1.1. Moving acoustic point source
The acoustic pressure field generated by a monopole point

sound source moving along a straight line at constant speed v is
described as [3,16]:

p tð Þ ¼ 1

4pR tð Þ 1�M cos h tð Þð Þ2
s t � R tð Þ

c

� �
: ð1Þ

where p tð Þ is the sound pressure at the microphone in the sound
field generated by the moving source, s tð Þ � qq0 tð Þ is the source sig-
nal with q the density of the air and q0 tð Þ is the first derivative of the
volume velocity q tð Þ of the source, R tð Þ is the distance between the
source and the microphone, M ¼ v=c is the Mach number, and h tð Þ
is the angle between the moving direction of the source and source-
microphone direction. s tð Þ represents the strength and the charac-
teristics of the source, and will be the signal to be reconstructed
for auralization. An illustration of a point source moving rectilin-
early at a constant speed is given in Fig. 1.
2.1.2. Time-domain transfer function

Defining te ¼ t � R teð Þ
c as the emission time at the moving source

and t as the reception time at the microphone, Eq. (1) can be writ-
ten as

p tð Þ ¼ 1

4pR teð Þ 1�M cos h tð Þð Þ2
s teð Þ: ð2Þ

The TDTF is denoted by

H tð Þ ¼ 1

4pR teð Þ 1�M cos h tð Þð Þ2
; ð3Þ

and it leads to p tð Þ ¼ H tð Þs teð Þ. Therefore, the transfer function is
then expressed as

H teð Þ ¼ 1

4pR teð Þ 1�M cos h teð Þð Þ2
; ð4Þ

and thus

p tð Þ ¼ H teð Þs teð Þ: ð5Þ
In practice, noise should be introduced to any measurement

model. Therefore, Eq. (5) with additive Gaussian noise is denoted
by

p tð Þ ¼ H teð Þs teð Þ þ n tð Þ: ð6Þ
The time index t and te will be suppressed to simplify the notation.
The problem above is extended to Mp microphones and N potential
sources, which yields the following form

p ¼ Hsþ n; ð7Þ

where p ¼ p1; . . . ;pMp

h iT
; s ¼ s1; . . . ; sN½ �T represents potential

sources, n ¼ n1; . . . ;nMp

� �T , and H 2 RMp�N .

2.2. Compressive beamforming

A moving vehicle, in terms of noise, can be decomposed and
represented by only a few main sources [2,17]. The beamforming
algorithms are able to detect how many main sources there are
and where they are located. The location can refer to the vehicle’s
component radiating sound, e.g. the engine and tire [2,17]. The
presence of only a few sources enables exploiting the spatial spar-
sity of s in Eq. (7). The spatial sparsity here can be interpreted as
the number of real sources is much smaller than the number of
potential sources in Eq. (7). Apart from sparsity, if the columns of
H are sufficiently incoherent, which indicates the correlation
between the columns is sufficiently low, s can be solved by CB,
specifically by minimizing the ‘0-norm [13,18], which counts the
number of non-zero entries in the vector

min
s2RN

jjsjj0 subject to p ¼ Hsþ n: ð8Þ
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The ‘0-norm is a difficult non-convex problem and is thus normally
replaced by the ‘1-norm

min
s2RN

jjsjj1 subject to p ¼ Hsþ n; ð9Þ

which can be recast as the unconstrained optimization

min
s2RN

jjp�Hsjj22 þ kjjsjj1; ð10Þ

where k is the regularization parameter which balances the norm of
the residual jjp�Hsjjand the sparsity of s.

The stated solution is to solve the ‘1-norm optimization prob-
lem for a single time sample. For localization, single sample pro-
cessing may find its application. However, if the values of one or
some of the chosen time samples happen to equal or to be close
to zero, the supposed spatial sparsity assumption would fail.
Therefore, the problem is extended to multiple time samples. The
cost function is reformulated as

P ¼ HSþ N: ð11Þ
where P ¼ p t1ð Þ; . . . ;p tTð Þ½ � 2 RMp�T ; S 2 RN�T ;H 2 RMp�N�T which
samples S temporally and spatially, N 2 R

Mp�T and T is the number
of time samples. Since sparsity is required in the spatial dimension
but not necessarily in time [12], the ‘2-norm of all time samples of a
particular focus point n is calculated, i.e. s‘2n ¼ jjsn t1ð Þ; . . . ; sn tTð Þjj2.
With the ‘1-norm of s ‘2ð Þ ¼ s ‘2ð Þ

1 ; . . . ; s ‘2ð Þ
N

h i
, the cost function becomes

min
s‘22RN

jjP�HSjj2F þ kjjs‘2 jj1; ð12Þ

where jj � jjF represents the Frobenius norm.
As the reception time t is calculated from the emission time te

and the time-variant R teð Þ, the calculated time stamps in the recep-
tion time t are non-uniformly spaced. Therefore, p tð Þ is interpo-
lated in terms of t and delivered as ~p tð Þ, which substitutes p tð Þ
when using Eq. (12). The ‘1-norm optimization problem is solved
in MATLAB using cvx toolbox [19].

After detecting the source position index ns, the source signal
reconstructed by CB is denoted as ŝns tð Þ; t ¼ t1; . . . ; tT .

2.3. Delay and sum beamforming

As DSB has been used for signal reconstruction [3], we will com-
pare the results of CB and DSB in our case. In the following the
modified DSB for moving sources for signal reconstruction is
briefly introduced. More details about de-Dopplerization for the
elimination of Doppler effect and the combination with DSB can
be found in [3].

Due to the nonlinearity of R tð Þ or R teð Þð Þ, the calculated recep-
tion time t ¼ te þ R teð Þ

c would not coincide with the uniform time
stamps by the microphone recording. Therefore, the recorded sig-
nal p tð Þ is first interpolated in terms of the calculated reception
time t, and delivered as ~p tð Þ. The de-Dopplerized signal p̂ can be
obtained [3]. Therefore, a stationary source case can be assumed
as the Doppler effect has been eliminated. The sound field gener-
ated by a stationary point source n tð Þ is expressed as [20]

p tð Þ ¼ 1
4pR

s t � R
c

� �
; ð13Þ

where R is the distance between the sound source and the micro-
phone, s tð Þ is the source signal and n tð Þ is the noise part. If the
de-Dopplerized signal is p̂ tð Þ with assuming the array is moving
with the source [3], the DSB equation [21] for a moving sound
source is
y tð Þ ¼
XMp

m¼1

wmp̂m t þ smð Þ

¼
XMp

m¼1

wm
1

4pR0m
ŝ t � R0m

c þ sm
� �

;

ð14Þ

where sm ¼ bR0
m � bR0

� �
=c, with bR0

m representing the distance

between the focus point of the microphone array and the ‘‘moving”

array origin, bR0 is the distance between the focus point and the
‘‘moving” array origin, R0

m is the distance between themth ‘‘moving”

microphone and the source, and ^s tð Þ is the reconstructed source sig-

nal. If the focus point coincides with the source position, bR0
m ¼ R0

m

and bR0 ¼ R0, Eq. (14) becomes

y tð Þ ¼ 1
4p

XMp

m¼1

wm

R0m

 !
ŝ t � R0

c

� �
¼ Cŝ t � R0

c

� �
;

ð15Þ

where C ¼ 1
4p
PMp

m¼1 wm=R
0
m

� �
is a constant which depends on the

weight and the positions of the potential sound source and micro-
phones. The reconstructed source signal ŝ tð Þ can be reconstructed
by the time shift R0=c and the division of the constant C on the

beamforming output signal y tð Þ. Note that ^s tð Þ also contains noise
recalling Eq. (6).

3. Design of pseudorandom microphone arrays

As mentioned in Section 2.2, the columns of the sensing matrix
H are supposed to be incoherent to utilize CB. A random array is
able to lower coherence in the sensing matrix [18], and the
restricted isometry property (RIP) should be satisfied [22]. Gau-
mond et al. [23] proposed statistical restricted isometry property
(StRIP) to help design sparse arrays. However, since DSB is also
used as comparison to CB, its performance should also be taken
into account. Gerstoft et al. introduced convex optimization to
enhance the performance of beam patterns of 2D random arrays
[24]. Good resolution and minimum maximum sidelobe level
(MSL) were also used as criteria to design the planar random arrays
[25–27]. A framework for the design and optimization of 2D pseu-
dorandom microphone arrays which benefits both CB and DSB by
considering RIP and beam patterns is proposed next.

3.1. Design concept

If the positions of microphones on an array aperture are ran-
domized, it would probably lead to the microphones clumping in
a small area, and thus reducing the spatial resolution if DSB is used
[25]. This would also possibly increase of the coherence of the
sensing matrix because of very similar R tð Þ of the closely localized
microphones. Therefore, restrictions are necessary to be intro-
duced to the randomization in the design of random microphone
arrays, which leads to pseudorandom microphone arrays.

According to Kook et al. [25], segmenting an array aperture into
units, i.e. unit partition, can guarantee that the microphones are
well distributed on the array aperture to avoid clumping. After-
wards, a baseline filter method is further introduced to ensure
the scattered distribution of the microphones [26]. Here, baseline
is defined as the distance between two arbitrary microphones in
a microphone array, and baseline vector is the corresponding
vector [25]. The baseline filter is able to keep the microphone
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distribution scattered by controlling the appearance number of
baseline vectors [26].

To employ CB, RIP should be considered and it is defined as

1� dp
� 	

Sk k22 6 HSk k22 6 1þ dp
� 	

Sk k22; ð16Þ

for all p-sparse vectors. Here, dp is the isometry constant of matrix
H. As this work explores not only on the localization capability, but
also the potential application for signal reconstruction, only the
p ¼ 1 case is considered to test the RIP. Hence only one sound
source is studied in the following.

The unit partition is able to deliver good beam patterns for DSB.
In this sense, resolution and MSL are chosen as two of the design
criteria. Therefore, the resolution, MSL and RIP are the criteria to
optimize the design of pseudorandom microphone arrays. Fig. 2
exhibits the proposed framework. The details are elaborated in
the following contents.
Fig. 3. The MSLs and resolutions of the 50 filtered arrays after baseline filtering and
RIP test.
3.2. Array design and optimization

The arrays are designed on an aperture of 1.8 m � 1.8 m with 32
microphones. The aperture is discretized into 32 units, in each of
which lays a microphone. Each unit has eight possible positions
according to Zheng et al. [26]. The locations of all microphones in
every unit are randomized. Irregular partition is adopted to ensure
that the microphones are as scattered as possible [26], as can be
seen in Fig. 4 that the units are either horizontal or vertical.

Only if the configuration meets the requirements of the baseline
filter method [26], can it be saved as a candidate array. Following
this rule, 1000 array configurations are generated. The RIP condi-
tion is then tested and we keep 50 arrays that meet the require-
ments. The resolutions for a 30� steering angle and MSLs for the
remaining 50 arrays are shown in Fig. 3.

It is observed that the resolution does not differ significantly
along the simulations. However, the MSLs can vary more than 10
dB between the selected array configurations. We select as the
Fig. 2. The framework for designing and optimizing pseudorandom microphone
arrays.

Fig. 4. The configuration of the optimized pseudorandom array with the scheme of
irregular partition. The potential positions of the microphones are indicated by the
‘‘s”, and the real positions of the microphones are represented by the ‘‘�.
optimized pseudorandom array configuration with the smallest
MSL (�19 dB MSL), which has 14� resolution at a steering angle
of 30�. Fig. 4 shows the optimal array configuration, as well as
the irregular unit partition.

4. Virtual scenario

A virtual scenario was created to test our algorithms. It is made
of a moving plane with two sound sources which are ‘‘recorded” by
the pseudorandom microphone array according to Section 2.1.1.
The recorded data was analyzed using both DSB and CB to obtain
the reconstructed source signals with the detected source
locations.

4.1. Simulation setup

Twomoving sound sources (S1 and S2) are simulated by Eqs. (2)
and (7). Note that the equations are denoted in continuous time,
but discrete time is required in digital processing. Thus the



Fig. 6. The sketch of the simulation. The reconstruction plane Xwith sound sources
S1 and S2 moves in the �x direction along the x-axis. The microphone array is set 5
m away from the x-axis, with the array origin on the z-axis.
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calculated signals on the right-hand side of Eq. (2) are interpolated
and resampled in terms of uniformly spaced time stamps to obtain
p tð Þ to simulate real recordings. S1 and S2 fixed in a plane which
moves in the �z direction at 20 m/s. The pseudorandom micro-
phone array is placed 5 m away from the moving trajectory that
is parallel with the array aperture. The moving plane is regarded
as the reconstruction plane X, on which the beamforming calcula-
tions are conducted. X is meshed into grids and the distance
between two grid points is 0.1 m. Each grid point is scanned as a
potential sound source’s position. S1 is on the origin of X, and S2
is 0.5 m located above S1 on the same vertical line. S1 and the ori-
gin of the array are both on the xz plane in the coordinate system. A
sketch of the simulation can be found in Fig. 6. A 6 s recording of
engine noise and a 6 s periodic signal are attached to S1 and S2,
respectively. The periodic signal consists of a fundamental tone
of 500 Hz and all its harmonics up to 8 kHz (with a random devi-
ation on each harmonic of up to 50 Hz), plus a 200 Hz tone. The
spectra of S1 and S2 are shown in Fig. 5.

The duration of S1 and S2, and the moving time of X is 6 s. The
starting and stop positions of X are symmetric in terms of the ori-
gin O of the x axis.

S1 is the target source to be localized and reconstructed and S2
is regarded as an interference source. A wide frequency range of
signal reconstruction can be studied by virtue of the broadband
engine noise.

The time window along which a grid point travels in the view-
ing window [8] is named as steering window. In the following cal-
culations, the signal-to-noise ratio (SNR) is 30 dB the length of the
steering window is 256 samples and the sampling rate is 44100 Hz,
unless stated otherwise.
Fig. 7. The source detection procedure. The figure is the two-dimension view of
Fig. 6 when looking in the þz direction. The viewing window is the product of the
time steering window twin and the source speed v, and all grid points are only
processed when they pass by the viewing window. The solid dots represent the grid
points on a vertical line on the reconstruction plane. The arrows point to the
positions of the grid points at the end of the spatial window. The grid points are
piecewise processes from t1; L1½ � to tn; Ln½ �.
4.2. Source detection

In Section 2.2, it was mentioned that the interpolated signal ~p tð Þ
is used instead of p tð Þ during calculation. Recalling te ¼ t � R teð Þ

c , in

this paper te ¼ t � R teð Þ
c , it can be seen that the interpolation can only

be proceeded with the knowledge of R teð Þ, which depends on the
locations of the source and receiver. It contradicts to our purpose
of obtaining the source location.

Therefore, the calculation strategy is as follows. At t1, the grid
points on the vertical line L1 as indicated by the solid dots in
Fig. 7 form a group, and they are only processed when they pass
by the viewing window, which is the spatial area between the
two dashed lines [8]. The length of the viewing window is the pro-
duct of the steering time window twin and the source speed v. In
each vertical line Ln, every grid point will be assumed as the source
and thus there will be a set of interpolated received signals for all
the 32 microphones. Subsequently, CB is applied on each point on
Ln with the interpolated signals. The calculation continues point-
Fig. 5. Signal spectra of the two sound source signals S1 and S2.
wise on every point and vertical line, until all the points have been
calculated. Fig. 7 exhibits the processing first at t1; L1½ �, then at
t2; L2½ �. All the CB outputs are of the same length, twin. Finally, a
two-dimensional matrix with the root mean square (RMS) values
of the amplitudes of CB output signals are derived. Large RMS val-
ues are detected as potential sound sources, with the correspond-
ing CB outputs as the reconstructed signals.

5. Error analysis

The proposed method using CB is evaluated by means of errors
regarding localization and signal reconstruction. Regularization
parameter, window length, SNR and mismatch are selected for
the error analysis. Errors using DSB are also given to compare with
CB.

5.1. Error description

The localization error eloc is defined as
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eloc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂� xð Þ2 þ ŷ� yð Þ2

q
; ð17Þ

where x̂; ŷ½ � and x; y½ � are the localized and original coordinates of
the source. The z coordinate is omitted since X and the trajectory
are both on the xy plane.

Jagla et al. [28] introduced a spectral method to evaluate the
similarity between signals with accounting for human hearing by
considering A-weighting and logarithmic sensitivity. They derived
the difference between two signals by calculating the square of the
subtraction between the absolute pressure values and then obtain-
ing the logarithm of the square. However, log spectral distance
which describes the difference between the logarithms of the
two signals instead, has been applied to measured the perceptual
distortion of speech processing [29]. It indicates that the logarith-
mic difference could be a criterion to quickly evaluate the percep-
tual difference. Therefore, we directly evaluate the absolute
logarithmic error in the decibel scale as

eS f kð Þð Þ ¼ 20log10
jbS f kð Þð Þj
jS f kð Þð Þj

�����
�����; k ¼ 1;2; . . . ;K ð18Þ

where S and bS are the Fourier transform of the reconstructed and
original signals, K is the number of the frequency bins. With adding
A-weighting to account for human hearing as in [28] and taking the
average over the whole frequency range, erec is derived for the error
estimation of the reconstructed signal:

erec ¼ 1
K

XK
k¼1

eS f kð Þð Þ þwA kð Þð Þ: ð19Þ

erec is the measure used in this study to assess the perceptual differ-
ence between the reconstructed and original signals, or simply put,
the reconstruction error. The small erec is, the more similar the
reconstructed signal is to the original signal. Note that listening
tests would be preferable to measure human perception more
straightforwardly, however, the aforementioned measure is advan-
tageous to quickly estimate errors in terms of various parameters.
Listening tests could be included for future work to obtain more
precise comparison from humans, and the results could also provide
a correlation between subjective and objective measures.

5.2. Regularization parameter vs. window length

It is critical to select the regularization parameter as it determi-
nes the tradeoff between the fit of the solution to the original data
versus the sparsity prior [12]. The selection of the regularization
parameter still remains a difficult question, and trials through sim-
ulations were conducted to find out the optimal solution [12,30]. It
was suggested that a low noise level could be employed for the
selection of regularization parameter to guarantee capturing all
nonzero elements [13]. It was also pointed out that the regulariza-
tion parameters in the constrained and unconstrained forms are
related [12]. Therefore, the regularization parameter b in the Dant-
zig Selector [31,32] is used as the search basis. b ¼ �Nr, where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN

p
and r is the standard deviation of the noise. Simula-

tions are conducted in the neighborhood of b to search for a good
choice of the regularization parameter k in the unconstrained form
in Eq. (12).

The errors of varying k from 0:5b to 2b are studied. Additionally,
the length of a steering window determines the spatial and spec-
tral resolution, which has been discussed for DSB [3]. Thus the reg-
ularization parameter and the window length are jointly
investigated. The errors of localization and signal reconstruction
are compared in Fig. 8(a) with SNR = 30 dB. Similar performance
between DSB and CB can be observed except for some large
variations for the windows with 32, 64 and 256 samples. For CB,
most of the errors in terms of various k achieve similar results.
For the 64- and 256-sample window, no error is detected from
the localization and signal reconstruction.

Now the SNR is decreased to 5 dB, a value more prone to be
found in real measurement situations. The errors are shown in
Fig. 8(b). eloc and erec become larger with decreasing the SNR as
expected, and the localization results of DSB and CB are still quite
similar. Nevertheless, DSB and CB can be clearly distinguished in
terms of signal reconstruction. For all the k selected, the erec of
CB are all below those of DSB, and each k delivers a separate curve.
The level difference could be quite large, e.g. around 6 dB for the
case of 64-sample window with k ¼ 0:5b and k ¼ 1:75b. The range
of SNR is then extended to [15 dB, �5 dB] to have a better under-
standing of the influence of SNR (Fig. 9, k ¼ 0:75b). It can be seen
that the reconstruction error increases as SNR decreases, and grad-
ually CB outperforms DSB.

In Eq. (15), the reconstructed signal ŝ tð Þ from DSB also contains
noise, the incrementation of which would lead to increasing error
in ŝ tð Þ. On the contrary, CB takes noise into account during the cal-
culation as shown from Eq. (9) to Eq. (11). Thus CB outperforms
DSB for signal reconstruction with the presence of strong noise,
i.e. SNR = 5 dB in our case. It can be expected that both algorithms
would perform similarly with the presence of slight noise
(SNR = 30 dB), as in Fig. 8(a). However, the localization ability of
CB shows no clear advantage over DSB in the current situation.
The distance between X and the microphones is large compared
to the microphone distances, which would result in potential
coherence in the TDTF and cause errors. It could degrade the local-
ization ability of CB leading to errors and similar performance with
DSB, as well as the signal reconstruction errors. Another possible
reason for the similarity between DSB and CB in localization could
be that only two sound sources are considered. CB would outper-
form DSB with the presence of many sources according to litera-
ture. The literature has been mainly focused on stationary
sources, based on which CB delivers better localization. Whereas
in the current study, moving instead of stationary sources have
been addressed, and CB is found not advantageous over DSB in
terms of localization. However, localization will not be further dis-
cussed due to our aim of signal reconstruction, not localization.

For the signal reconstruction, no clear deviation of erec is
observed when varying k under SNR = 30 dB. Whereas, erec
increases as k increases with higher noise level, SNR = 5 dB. This

can be explained by Eq. (12). When SNR is large, jjP�HSjj2F devi-
ates little due to low noise level, which indicates that the recon-
structed and original signals are quite similar. As noise increases

(SNR decreases), jjP�HSjj2F can be largely deviated accordingly.
Thus, the selection of lambda is critical, leading to erec varying more
with changing k in Fig. 11(b) than in Fig. 11(a). However, no obvi-
ous correlation between erec and the window length is found. The
largest window length studies is with 512 samples, which provides
a frequency resolution of 86 Hz under the sampling rate of
44.1 kHz. This leads to energy leakage over the whole frequency
range. This leakage is not correlated to the frequency resolution,
which results in the random change of erec with the window length
considered in this work.

The lowest erec with the window length of 32 samples and
k ¼ 1:75b can be selected for signal reconstruction. However, the
corresponding eloc reaches over 0.5 m in this sense, which would
lead to perceptional difference in auralization. Additionally, this
window length is too limited to extract the characteristics of the
source signal, e.g. low frequency information. It is thus necessary
to select parameters according to both localization and signal
reconstruction.



Fig. 8. The errors of localization and signal reconstruction versus window length for various regularization parameter kwith (a) SNR = 30 dB and (b) SNR = 5 dB using DSB and
CB. The value of 64 samples with CB k ¼ 2b is 174.5 dB, which is out of the range of the y-axis and not shown in the figure.

Fig. 9. The errors of localization and signal reconstruction versus SNR (Window
length: 256 samples, k ¼ 0:75b).
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5.3. Mismatch

Mismatch emerges when a sound source is between two grid
points. In the DSB case, wrong delays would be introduced to the
calculations and basis mismatch in the sensing matrix would occur
in CB [13]. In this context, neither beamforming method is able to
correctly localize the source. The sensitivity of compressive sensing
to DFT basis mismatch was studied by Chi et al. [33]. For the appli-
cation of sound source localization using CB, the basis mismatch
was analyzed and several wrong localization results were pre-
sented [30].

S1 is placed from 0.01 m to 0.09 m away from the origin of X in
the y direction with 0.02 m step to create mismatch D 2 [0.01 m,
0.09 m]. SNR = 5 dB, k ¼ 1:75b and the window length is 256 sam-
ples. The error results are exhibited in Fig. 10. The signal recon-
struction using CB creates lower error than using DSB, the
variation is around 5 dB. This is in line with the results from the
previous section, that CB is more reliable than DSB under the given
SNR if the parameters are selected properly. However, compared to
the matched case, CB also yields larger erec due to mismatch com-
pared to the matching cases. Note that erec does not vary much as D



Fig. 10. The errors of localization and signal reconstruction versus mismatch D
(Window length: 256 samples, SNR = 5 dB).
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changes. It is because the mismatch studies is small compared to
the distance L. This implies that in the current simulation setup,
the reconstruction accuracy is robust in terms of mismatch.

5.4. Distance

The positions of microphones have been randomized and opti-
mized to reduce the coherence of the sensing matrix. Recalling
Eq. (3), large R tð Þ would increase the similarity between TDTFs in
the sensing matrix, which could reduce the coherence. Together
with the microphone position, the distance L between the source
trajectory and array plane should also be considered with respect
to the coherence.

Fig. 11 shows the drop of erec with decreasing L until 2 m, and
the curve of CB is below that of DSB. When L = 1 m, erec of CB rises
and goes beyond DSB. This could be due to the regularization
parameter k. As L decreases the sensing matrix changes as well. k
was selected with L = 5 m, and it indicates that when L reaches
1 m k is supposed to be reselected to balance the residual
jjp�Hsjj and the sparsity of s.

However, in on-site measurements of pass-by vehicles, it is not
always viable to place the microphone array close to the vehicle
Fig. 11. The signal reconstruction error versus distance L (Window length: 256
samples, SNR = 5 dB).
trajectory. First of all, the turbulence between the car and air
would introduce more noise to the microphones. Additionally,
the risk exists that the array aperture would fall towards the car.
It is thus necessary to keep the array distant from the trajectory.
Note that in the safe distance range, CB outperforms DSB in signal
reconstruction.
6. Application on a moving loudspeaker

6.1. Measurement setup

The measurements were performed on the Proving Ground of
Institute for Automotive Engineering, RWTH Aachen University.
The proving ground has a 400 m long test track with an acoustical
part which was built referring to ISO 10844/94 [34]. The array was
set 5 m away from the moving trajectory of the near-side surface of
the car to keep a safe distance, on which the loudspeaker was
installed. The car ran along the trajectory parallel to the array plane
at different speeds. The near-side surface as the reconstruction
plane was discretized into grids with 0.1 m spacing. During the
measurements, the speeds were 20 km/h, 30 km/h, 50 km/h, 80
km/h and 100 km/h with two repetitions, respectively. The loud-
speaker’s position was measured and located at [1.2 m, 3.2 m] with
reference to the front bottom point on the reconstruction plane.
Fig. 12 shows the pass-by measurement setup.

A set of photoelectric sensors were placed between the trajec-
tory and the array. The sender was placed on the other side of
the car’s trajectory. The emitted infrared light could be subse-
quently received by the receiver sensor (can be seen in Fig. 12)
with the absence of obstacles. A switch of receiving the light at
the sensor would generate an impulse in the sensor’s recording
channel. Two impulses were excited due to the car approaching
and leaving. The receiver sensor was connected to the same pream-
plifier with the microphones and thus synchronized. The pass-by
time of the car is TApr:; TLea:

� �
. Note that TApr:; TLea:

� �
is in terms of

the emission time. Following what was shown in Fig. 7 in Sec-
tion 4.2 and taking the near-side surface of the car as the recon-
struction plane X, the loudspeaker can be localized and its signal
emitted during passing by the steering window can be recon-
structed. Additionally, with the knowledge of the car’s length, the
speeds were calculated.

The same engine noise signal as in the simulations was played
during the pass-by measurements. A sweep signal was added
and played before the engine signal. The impulse response of the
sweep signal could indicate the delay in the recording channels
in terms of the playback channel and thus synchronize the record-
ing and playback, in order to extract the original signal from the
playback channel according to the pass-by time TApr: ; TLea:

� �
. The
Fig. 12. The pass-by measurement of a car with a loudspeaker installed.
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reference signal, from which the original signal was extracted, was
recorded in an anechoic chamber.

The regularization parameter k ¼ 1:75b, and a steering window
of 256 samples are applied.
Fig. 14. The signal reconstruction error erec of DSB and CB in terms of sample shift of
the time interval, which is used to extract the original signal.
6.2. Results

The localization results of the loudspeaker in terms of various
speeds are shown in Fig. 13. x0; y0½ � are the coordinates with the
front bottom of X as the origin of the local coordinate system.
The dashed lines are the approximated x0 and y0 positions of the
geometrical center of the loudspeaker surface. However, it is
uncertain if the geometrical center matches the acoustic center.
An interesting observation is that CB is slightly more accurate in
localizing the loudspeaker, which was not implied in the simula-
tions. However, it could result from the measurement uncertain-
ties. The car could have not exactly followed the indicated line
on the ground, especially at higher speeds. This trajectory offset
could also explain the large variations in the y0 direction in
Fig. 13. Moreover, uncertainties also exist in the measured posi-
tions, e.g. positions of the microphones, photoelectric sensors and
loudspeaker, which can introduce errors into the results.

Regarding the reconstruction results, all differences between CB
and DSB are within 1 dB, with CB slightly outperforming DSB. Take
the first 50 km/h run as an example, the erec of DSB and CB are 4.4
dB and 3.5 dB, respectively. Since the result values are even lower
than the simulation results, they might be inaccurate since the
aforementioned uncertainties could lead to incorrect distances
and thus a wrong time interval for the extraction of the original
signal, on the basis of which erec is computed. To inspect the possi-
ble erec variations caused by uncertain time intervals, the calcu-
lated time interval is shifted from �256 to 256 samples, leading
to 512 different extracted original signals. Fig. 14 shows the erec
in terms of the sample shift, demonstrating that the erec bias ranges
from 0 dB to 10 dB (for CB is around 0–9 dB). Overall, the erec curve
of CB is overall slightly below the DSB curve, which is in line with
the simulations. Moreover, it also supports that CB is more robust
under basis mismatch caused by the measurement uncertainties.
7. Discussion

In the simulations, the sample number of the steering window
varied from 32 to 512 with the sampling rate of 44.1 kHz. A dip in
the reconstruction error can be observed in Fig. 8(a) when the win-
Fig. 13. Localization in x0 and y0 direction of the loudspeaker versus car speed with
0.1 m spaced grids. The dashed lines in the upper and bottom plots represent 3.2 m
and 1.2 m, respectively. Here, x0; y0½ � are the coordinates with the front bottom of X
as the origin of the local coordinate system.
dow length has 128 samples. Due to the computational cost of
using CB, larger steering windows were not investigated. Small
window size would cause loss of some low frequencies. Instead
of using those short signal excerpts for auralization, the signal data
are captured in parameters such as spectral and temporal envel-
opes. The actual signal synthesis will be done in combination with
synthesis methods, such as spectral modeling synthesis (SMS) [35],
to create audible sounds with arbitrary lengths to adapt to
dynamic auralization scenes. Synthesizing pass-by sounds with
combining parameters extracted from the reconstructed signals
using DSB and SMS has been presented and could be perceived
as realistic, although with small windows [36]. It indicates that
the potential loss of low frequencies may not be audible. Another
limitation of the proposed method is that the regularization
parameter k is determined by the particular simulations in Sec-
tion 5.2. Obtaining k through simulation trials has been used in
previous CB work since it is difficult to discover a general solution
[12]. It is thus not generic to other scenarios, for instance, the on-
site measurements.

In the simulation, it is straightforward to localize the time slot
in the entire reference source signal to extract the original signal,
which is recorded by microphones and post-processed to achieve
the reconstructed signal. In the measurements, however, limited
control of measurement conditions can result in biased results.
As stated in the localization results of the measurements, the car
might not follow the indication on the ground, leading to wrong
extraction of the original signal from the reference source signal.
Thus Fig. 14 was shown to look into how much it would deviate.
Another concern that needs to be mentioned is that the reference
source signal was measured in an anechoic chamber, which intro-
duced uncertainties due to resetting the measurement setups. On-
site measuring the reference signal is not preferable since it is dif-
ficult to capture the accurate signal played by the loudspeaker in
an outdoor measurement environment. Moreover, the directivity
pattern of the loudspeaker should have been taken into account
in the measured data. It is neglected in this work due to the slight
change in the directivity pattern, resulting from the small
loudspeaker-microphone angle variations during the short pass-
by distance within the steering window.
8. Concluding remarks

CB is applied to the signal reconstruction of a fast moving
engine signal. A pseudorandom microphone array is designed to
fulfill the requirement of CB, as well as assuring optimized localiza-
tion performance of DSB in order to compare the two beamforming
algorithms. The parametric studies indicate that CB outperforms
DSB in terms of signal reconstruction under noisy situations, basis
mismatch and large distance L between the array and source mov-
ing trajectory, while under ideal noise condition, e.g. SNR = 30 dB,
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the performance of both algorithms are quite similar. Additionally,
the performance of CB varies in terms of the window length and
distance L. The reconstruction error increases with increasing L.
In the measurement application, the signal reconstruction perfor-
mance of CB and DSB are similar, just like the parameter analysis
for SNR = 30 dB, but still delivers lower reconstruction errors. For
localization, CB and DSB are quite similar in this study, both in sim-
ulations and measurements. Potential coherence in the sensing
matrix due to large distance L and small number of sources could
explain the localization similarity of the two algorithms. Neverthe-
less, for the purpose of this paper, signal reconstruction, CB has
been demonstrated to be advantageous by means of simulations
with various parameters and measurements, and thus be able to
reconstruct the signals from fast moving sources.

The measure erec proposed in this study is advantageous to
quickly evaluate the reconstructed signals, especially taking into
account the high computational demand of CB. However, although
erec accounts for human perception, listening tests are still desired
to acquire more straightforward perceptual difference between the
reconstructed and original signals. Furthermore, source signals
with arbitrary lengths can be created combining parameters
extracted from the reconstructed signal, with proper signal synthe-
sis approach, e.g. spectral modeling synthesis (SMS). Pass-by vehi-
cles in real scenarios will be measured by the designed array and
post-processed by the proposed method. Thus, with proper propa-
gation models and reproduction techniques, dynamic pass-by
auralizations can be created to compare with real-scenarios to help
validate and improve the method we proposed. The proposed work
would be applicable with further array design and algorithm opti-
mization to increase the reconstruction accuracy for real complex
urban scenarios to obtain various source signals from moving
vehicles.
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